skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Basumallik, Sagnik"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Timely and accurate detection of events affecting the stability and reliability of power transmission systems is crucial for safe grid operation. This paper presents an efficient unsupervised machine-learning algorithm for event detection using a combination of discrete wavelet transform (DWT) and convolutional autoencoders (CAE) with synchrophasor phasor measurements. These measurements are collected from a hardware-in-the-loop testbed setup equipped with a digital real-time simulator. Using DWT, the detail coefficients of measurements are obtained. Next, the decomposed data is then fed into the CAE that captures the underlying structure of the transformed data. Anomalies are identified when significant errors are detected between input samples and their reconstructed outputs. We demonstrate our approach on the IEEE-14 bus system considering different events such as generator faults, line-to-line faults, line-to-ground faults, load shedding, and line outages simulated on a real-time digital simulator (RTDS). The proposed implementation achieves a classification accuracy of 97.7%, precision of 98.0%, recall of 99.5%, F1 Score of 98.7%, and proves to be efficient in both time and space requirements compared to baseline approaches. 
    more » « less
  2. The widespread application of phasor measurement units has improved grid operational reliability. However, this has increased the risk of cyber threats such as false data injection attack that mislead time-critical measurements, which may lead to incorrect operator actions. While a single incorrect operator action might not result in a cascading failure, a series of actions impacting critical lines and transformers, combined with pre-existing faults or scheduled maintenance, might lead to widespread outages. To prevent cascading failures, controlled islanding strategies are traditionally implemented. However, islanding is effective only when the received data are trustworthy. This paper investigates two multi-objective controlled islanding strategies to accommodate data uncertainties under scenarios of lack of or partial knowledge of false data injection attacks. When attack information is not available, the optimization problem maximizes island observability using a minimum number of phasor measurement units for a more accurate state estimation. When partial attack information is available, vulnerable phasor measurement units are isolated to a smaller island to minimize the impacts of attacks. Additional objectives ensure steady-state and transient-state stability of the islands. Simulations are performed on 200-bus, 500-bus, and 2000-bus systems. 
    more » « less